98 Golang interview questions to hire talented
interviewees

Questions

. What are the key differences between maké and new in Go?

. How does Go handle concurrency, and what are goroutines and channels?
. Explain the concept of interfaces in Go. Can you give an example?

. What is the purpose of the defet keyword in Go?

. How does Go manage memory, and what is garbage collection?

. Describe the use of pointers in Go. When would you use them?

. What are the different ways to declare variables in Go?

. Explain the use of structs in Go. How are they different from classes in other languages?

O 00 N o0 o A W N -

. What are the basic data types available in Go?

10. How do you handle errors in Go? What is the error type?

11. Explain the use of packages in Go. How do you import and use them?
12. What are the differences between arrays and slices in Go?

13. How does Go support testing? What is the testing package?

14. Explain the concept of methods in Go. How are they defined and used?
15. What is the zero value of a variable in Go? Does it differ by type?

16. How do you handle command-line arguments in Go?

17. Explain the purpose of the go.mod file in a Go project.

18. What is the use of the select statement in Go?

19. How do you implement a simple HTTP server in Go?

20. Explain the concept of closures in Go. Can you provide an example?
21. How does Go handle string manipulation? What are some common string functions?
22. What is the difference between a buffered and an unbuffered channel?
23. How can you detect race conditions in Go code?

24. Explain the difference between maké and new in Golang. When would you use one over
the other?

25. How does Golang handle concurrency? Describe goroutines and channels.
26. What is the purpose of the select statement in Golang? Provide a practical example.

27. Explain the concept of interfaces in Golang. How are they different from interfaces in
other languages like Java or C#?

28. What are deferred functions in Golang? How do they work, and what are they typically
used for?

29. Describe the use of context in Golang. How can it be used to manage goroutines?
30. Explain the purpose of the go vet tool. What kind of issues does it help identify?

31. What are the advantages of using Golang's built-in testing framework? How do you
write a simple test case?

32. How do you handle errors in Golang? What is the purpose of the error interface?

33. Explain the concept of zero values in Golang. What is the zero value for different data
types?

34. What is the role of the init function in Golang? When is it executed?

35. Describe how garbage collection works in Golang. Is it possible to manually trigger
garbage collection?

36. How can you profile Golang code? What tools are available for performance analysis?

37. What are race conditions in concurrent Golang programs? How can you detect and
prevent them?

38. Explain the use of mutexes in Golang. Provide an example of how to protect shared
resources.

39. How does Golang support embedding? Give a practical use case.

40. What are the benefits of using static analysis tools in Golang? Give some examples of
such tools.

41. Describe the purpose of the go generaté command. How can it be used to automate
code generation?

42. Explain the difference between buffered and unbuffered channels. When should you
use each type?

43. What are the trade-offs between using shared memory and message passing for
concurrency in Golang?

44. Describe how reflection works in Golang. What are its use cases and potential
drawbacks?

45. Explain the purpose of the go do¢ tool. How can you document your Golang code
effectively?

46. What is the purpose of the iota keyword in Golang? Provide an example of its use.

47. How can you implement a worker pool in Golang? What are the benefits of using a
worker pool?

48. Explain the concept of method sets in Golang. How do they relate to interfaces?

49. Describe the process of building and deploying Golang applications. What are some
common deployment strategies?

50. How does Golang's garbage collector work, and what are some strategies for
minimizing garbage collection pauses in high-performance applications?

51. Explain the concept of 'escape analysis' in Go, and how it affects memory allocation and
performance.

52. Describe the use cases for context.Context in Golang, and how it facilitates cancellation
and deadline propagation across goroutines.

53. How does the Golang scheduler manage goroutines, and what are the implications for
concurrency and parallelism?

54. What are the trade-offs between using channels and mutexes for synchronizing access
to shared data in concurrent Go programs?

55. Explain the concept of 'zero-copy' networking in Golang, and how it can improve
performance for network-intensive applications.

56. How can you implement a generic data structure (e.g., a generic stack or queue) in Go
before the introduction of generics, and what are the limitations?

57. Discuss the differences between reflection and code generation in Golang, and when
you might choose one over the other.

58. Explain how you would implement a custom linter in Golang to enforce specific coding
standards or detect potential bugs.

59. Describe how you can use cgo to interface with C code in a Golang program, and what
are the potential challenges?

60. How does Golang handle memory alignment, and why is it important for performance
and portability?

61. Explain how you would debug a deadlock or race condition in a concurrent Golang
program.

62. What are the benefits and drawbacks of using protocol buffers (protobufs) for data
serialization in Golang?

63. Describe how you would implement a rate limiter in Golang to protect a service from
being overwhelmed by requests.

64. How can you use the 'go:embed' directive to include static assets (e.g., HTML templates,
images) in a Golang binary?

65. Explain how you would implement a custom error type in Golang that provides more
context and debugging information.

66. Describe the use cases for the 'unsafe' package in Golang, and what are the risks
associated with using it?

67. How does Golang's module system work, and how does it help manage dependencies
in large projects?

68. Explain how you would implement a graceful shutdown mechanism for a Golang server
application.

69. Describe how you can use the 'pprof' package to profile and optimize the performance
of a Golang application.

70. How would you implement a worker pool pattern in Golang to manage and limit the
number of concurrent goroutines?

71. Explain the concept of 'copy-on-write' semantics in Golang, and how it affects the
behavior of slices and maps.

72. Describe how you would use build tags in Golang to conditionally compile code for
different platforms or environments.

73. How can you implement a custom allocator in Golang to improve memory management
for specific use cases?

74. How does Go's garbage collector work, and what strategies can you use to minimize its
impact on performance-sensitive applications?

75. Explain the differences between unsafe.Pointet, uintptt, and reflect.Value.UnsafeAddr().
When should each be used, and what are the potential risks?

76. Describe the internal implementation of Go's maps. How do they handle collisions, and
what are the performance implications of different key types?

77. How does Go's scheduler manage goroutines, and what factors can influence
scheduling decisions?

78. Explain how Go's escape analysis works and how it impacts memory allocation and
garbage collection.

79. Describe the role of the runtimé package. Provide some examples of how its features
can be used for advanced debugging or profiling.

80. What are the trade-offs between using channels and mutexes for synchronization in Go,
and when would you choose one over the other?

81. How does Go's compiler optimize code, and what techniques can you use to help it
generate more efficient binaries?

82. Explain how to use cgo effectively and what are the potential pitfalls of mixing Go and C
code?

83. Describe the process of cross-compilation in Go and how to manage platform-specific
dependencies.

84. How can you implement a custom memory allocator in Go and why might you want to
do so?

85. Explain the concept of 'zero-copy' techniques in Go and how they can improve
performance in |/O-bound applications.

86. How does Go support dynamic linking, and what are the advantages and disadvantages
of using it?

87. Describe the differences between reflection and code generation in Go, and when
would you choose one approach over the other?

88. Explain how Go's race detector works, and how can you use it effectively to identify
concurrency issues?

89. What are the limitations of Go's type system, and how can generics (if available) address
some of those limitations?

0. How does Go handle signals, and how can you use them to gracefully shut down a
program?

@1. Explain the concept of 'context' in Go and how it is used for request cancellation and
deadline propagation.

@2. How can you implement a custom linter for Go code and why might you want to do so?
@3. Describe the different ways to profile Go code and how to interpret the profiling data.

94. Explain how Go's error handling mechanism works, and what are the best practices for
handling errors in production code?

9@5. How do you implement a worker pool in Go, and what are the key considerations for
designing an efficient worker pool?

Q6. Explain the differences between blocking and non-blocking 1/0 in Go, and when would
you use each approach?



