
96 Solidity Interview Questions to Hire Top Developers

Questions

1. What's the first thing that comes to your mind when I say 'smart contract'?

2. If Solidity is like a toolbox, what's one tool you'd definitely keep in it?

3. Can you explain what 'gas' is in Ethereum, like you're explaining it to a friend playing a
game?

4. Imagine you're sending a digital birthday card using a smart contract. How would you
make sure only the right person can open it?

5. What's the difference between '==' and 'equal to' in Solidity? Give a simple example.

6. If you could teach a robot one thing about Solidity, what would it be?

7. Why do we need to specify data location such as memory or storage for variables in
Solidity?

8. What is the difference between a 'view' and 'pure' function?

9. How would you explain the concept of immutability in the context of blockchain data?

10. What is the purpose of a fallback function and when might it be used?

11. How do you handle errors in Solidity, and why is it important?

12. What are some potential security risks in smart contracts, and how can you avoid them?

13. Explain the purpose of modifiers and give a practical example

14. What are events in Solidity and why are they useful?

15. Can you describe a situation where you would use a struct in Solidity?

16. What are some of the limitations of Solidity?

17. What are some benefits of using libraries in Solidity?

18. What is the difference between address and address payable?

19. If someone wanted to send Ether to your smart contract, how would you handle that?

20. Explain how inheritance works in Solidity and a simple use case?

21. What is the purpose of the 'require' statement in Solidity?

22. How does the concept of ownership work in a smart contract? Give an example

23. Can you explain what a decentralized application (dApp) is in relation to Solidity smart
contracts?

24. What is Reentrancy Attack, and how would you prevent it?

25. What's the difference between v̀ieẁ and p̀urè functions? Can you give a simple example
of each?

26. Explain what a fallback function is and when it is executed?

27. What is the purpose of the p̀ayablè keyword in Solidity, and where can you use it?

28. If a function modifies state variables, how does that affect the gas cost?

29. What is the difference between àddress̀ and àddress payablè in Solidity?

30. Describe the difference between t̀ransfer̀ and s̀end̀ when sending ether to an address
and what are their limitations?

31. What are events in Solidity, and why are they useful?

32. Can you explain what a constructor is and when it gets executed?

33. What are modifiers in Solidity, and how can they be used to control function execution?

34. What is the difference between m̀emorỳ and s̀toragè when declaring variables in
Solidity?

35. Explain how inheritance works in Solidity, and what are some potential issues to watch
out for?

36. What is the purpose of the r̀equirè function, and how is it different from àssert̀?

37. What is the difference between ìnternal̀, èxternal̀, p̀ublic̀, and p̀rivatè in Solidity?

38. What is the concept of gas in Ethereum and how does it relate to Solidity smart
contracts?

39. Describe what happens when a smart contract runs out of gas during execution?

40. What is a struct in Solidity, and how would you define and use one?

41. What is an enum in Solidity and what are the use cases?

42. How would you implement a simple state machine in Solidity?

43. Can you explain what an array is in Solidity? How do you define a fixed-size array versus
a dynamic array?

44. What is the difference between a mapping and an array in Solidity, and when would you
use one over the other?

45. What is OpenZeppelin and how it is useful when developing smart contracts?

46. How do you handle errors in Solidity smart contracts, and what are some best practices
for error handling?

47. How does inheritance work in Solidity, and what are the differences between ìs̀ and
ìnheritancè in the context of smart contracts?

48. Explain the concept of gas optimization in Solidity smart contracts, and provide
examples of techniques to reduce gas consumption. Imagine I'm five and gas is candy.

49. What are the advantages and disadvantages of using libraries in Solidity smart
contracts, and how do you deploy and use a library?

50. Describe the different types of function visibility in Solidity (private, internal, external,
public) and explain when to use each.

51. How do you handle errors and exceptions in Solidity smart contracts, and what are the
differences between àssert̀, r̀equirè, and r̀evert̀?

52. Explain the concept of events in Solidity, and how they are used for logging and off-
chain monitoring.

53. What are the different data types available in Solidity (e.g., uint, address, bool, bytes),
and when would you use each?

54. How do you implement access control in Solidity smart contracts, and what are the
common patterns for restricting access to certain functions or data?

55. Explain the concept of fallback functions in Solidity, and when they are executed.

56. What are the risks associated with integer overflow and underflow in Solidity smart
contracts, and how can you prevent them?

57. Describe the different ways to send Ether to a contract in Solidity (e.g., transfer, send,
call) and explain the potential risks and limitations of each method.

58. How do you implement a state machine in Solidity smart contracts, and what are the
benefits of using this pattern?

59. Explain the concept of proxy contracts in Solidity, and how they can be used for
contract upgrades and flexibility.

60. What are the best practices for writing secure and reliable Solidity smart contracts, and
what are the common vulnerabilities to watch out for?

61. How do you implement a multi-signature wallet in Solidity smart contracts, and what are
the security considerations?

62. Explain the concept of immutability in Solidity, and how can you create immutable
variables in a Solidity contract?

63. What is a Merkle tree and how can it be implemented in a Solidity smart contract?

64. Explain the difference between 'call', 'delegatecall', and 'staticcall' and the security
implications for each.

65. What is a contract's ABI and how is it used when interacting with a deployed contract?

66. How can you use Chainlink oracles in Solidity to retrieve external data?

67. What are some differences between using mapping and array data structures?

68. Explain how to use a 'modifier' to check pre-conditions before a function is executed.
Give me a real life analogy.

69. How does the Ethereum Virtual Machine (EVM) work at a high level, and how does it
execute Solidity smart contracts?

70. What are some alternatives to OpenZeppelin, and what are the tradeoffs to using a
framework at all?

71. Explain the concept of contract size limits in Solidity, and how can you avoid exceeding
them. Make me understand like I am five.

72. What are some common attack vectors for smart contracts, and how can you protect
against them. Pretend that you are telling me about protecting my lemonade stand.

73. How do you write unit tests for Solidity smart contracts using tools like Truffle or
Hardhat?

74. Describe the different types of storage available in Solidity (storage, memory, calldata),
and explain when to use each. Explain like I am five.

75. How does the b̀lock̀ and t̀x̀ global variables work?

76. How would you design a secure and efficient contract for managing a decentralized
exchange (DEX) order book?

77. Explain different gas optimization strategies you would employ when developing a
complex smart contract.

78. Describe the potential vulnerabilities and mitigation techniques for reentrancy attacks in
Solidity, including real-world examples.

79. How do you implement upgradeable smart contracts using proxies, and what are the
trade-offs associated with different proxy patterns?

80. Detail the challenges of implementing secure random number generation in Solidity and
how to mitigate those challenges.

81. Explain how you would implement a multi-signature wallet with features such as daily
spending limits and key rotation.

82. Describe the different approaches to handling integer overflow and underflow in
Solidity versions before and after Solidity 0.8.0.

83. What are some common design patterns used in Solidity development, and how do
they address specific challenges?

84. How would you use the Chainlink oracle network to fetch external data into a Solidity
smart contract securely?

85. Explain the limitations of Solidity's formal verification tools and how they can be used to
improve contract security.

86. Discuss the implications of using different data storage patterns (e.g., mappings vs.
arrays) on gas costs and contract performance.

87. How would you design a contract to comply with ERC-721 or ERC-1155 token standards
while optimizing for gas efficiency and security?

88. Describe how you would approach debugging complex Solidity smart contracts,
including the use of debugging tools and techniques.

89. What are the trade-offs between using on-chain vs. off-chain storage for data in a
decentralized application?

90. How would you implement access control mechanisms beyond Òwnablè to handle
complex permissioning scenarios?

91. Explain the differences between d̀elegatecall̀, c̀all̀, and c̀allcodè, and how they impact
contract security.

92. How do you handle errors and exceptions in Solidity, and what are the best practices for
ensuring contract robustness?

93. What are the security considerations when integrating with third-party smart contracts,
and how do you mitigate potential risks?

94. Explain how you would implement a decentralized autonomous organization (DAO)
using Solidity, addressing challenges related to governance and security.

95. How would you design and implement a contract that interacts with other smart
contracts on different blockchains using cross-chain communication protocols?


