
95 Django Interview Questions to Hire Top Developers

Questions

1. What is Django, in simple terms, and why do developers use it?

2. Can you describe the Model-View-Template (MVT) architecture that Django uses? Explain
each component.

3. What are Django models, and how do they help in database interactions?

4. How do you create a simple Django project and a Django app?

5. What are Django views, and what is their role in handling user requests?

6. Explain Django templates and how they are used to display data.

7. What are Django URLs, and how do you map them to views?

8. How do you define a model field in Django, and what are some common field types?

9. What is the Django ORM, and how does it simplify database queries?

10. How do you perform basic database operations like creating, reading, updating, and
deleting data using the Django ORM?

11. What are Django forms, and why are they useful for handling user input?

12. How do you create a simple form in Django and process its data?

13. What is the purpose of Django's àdmiǹ interface, and how do you customize it?

14. Explain Django's template language and how you use it to display variables and control
flow.

15. What are Django migrations, and why are they important for managing database
schema changes?

16. How do you run migrations in Django, and what commands are used?

17. What are Django signals, and how can you use them to trigger actions when certain
events occur?

18. How do you handle static files (like CSS, JavaScript, and images) in a Django project?

19. What is Django middleware, and how can you use it to modify requests and responses
globally?

20. Explain the difference between r̀equest.GET̀ and r̀equest.POST̀ in Django, and when
would you use each?

21. How do you use Django's session framework to store user-specific data?

22. What are Django's class-based views, and how do they differ from function-based
views?

23. How would you implement user authentication in a Django project?

24. How do you handle form validation in Django?

25. Explain how you would set up a basic unit test for a Django view.

26. Describe how you would deploy a simple Django application to a production
environment.

27. Imagine Django is a box of LEGOs. What kinds of things can you build with it?

28. What is a Django model, in simple words? Think of it like a blueprint.

29. Explain what a Django view does. What's its job in showing something to the user?

30. What does Django's ùrls.pỳ do? Pretend it's a map.

31. What is Django's admin panel? Why is it useful? Imagine a control panel.

32. What's the difference between G̀ET̀ and P̀OST̀ requests? Think sending a letter vs. filling
a form.

33. What is a template in Django? What's its role in building dynamic websites?

34. What is Django's ORM? How does it help in interacting with databases?

35. Explain what a Django form is. How does it handle user input?

36. What are Django migrations for? Imagine updating a house's structure.

37. How would you create a simple 'Hello, World!' view in Django?

38. What is the purpose of s̀ettings.pỳ in a Django project?

39. Describe how you would connect a Django model to a specific database table.

40. What are static files in Django? Where would you store them?

41. If you encounter an error in your Django project, how would you go about debugging
it?

42. Explain the concept of inheritance in Django models. Think of it as family traits.

43. What's the purpose of Django's m̀anage.pỳ file?

44. How would you handle user authentication in Django? What built-in features does
Django provide?

45. What is a session in Django, and how is it used?

46. Explain the role of middleware in Django. Think of it as a gatekeeper.

47. Describe a situation where you might use Django signals.

48. What are some common Django project directory structures? Why are they helpful?

49. How does Django help protect against common web vulnerabilities like Cross-Site
Scripting (XSS)?

50. What is Django Rest Framework (DRF) and how is it used?

51. How can you optimize Django ORM queries to reduce database load?

52. Describe the process of implementing custom user authentication in Django. What are
the key considerations?

53. Explain the differences between class-based views and function-based views in Django,
and when you might choose one over the other.

54. How do you handle file uploads in Django, including validation and storage
considerations?

55. Explain how Django's middleware works and provide an example of a custom
middleware you might implement.

56. How can you implement caching in a Django application to improve performance?

57. Describe the process of creating and using custom template tags and filters in Django.

58. Explain how to use Django signals effectively to decouple application components.

59. How would you implement a RESTful API using Django REST Framework? What are the
key components?

60. Discuss the different ways to handle background tasks in Django, such as using Celery
or other task queues.

61. Explain how you would implement user permissions and authorization in a Django
application using groups and permissions.

62. How do you handle different environments (development, staging, production) in a
Django project?

63. Describe your approach to testing Django applications, including unit tests, integration
tests, and end-to-end tests.

64. Explain the concept of Django's form handling and how you would create custom form
fields and widgets.

65. How can you internationalize (i18n) and localize (l10n) a Django application?

66. Describe the process of deploying a Django application to a production server,
including considerations for security and scalability.

67. How do you handle database migrations in Django, and what strategies do you use for
managing migrations in a team environment?

68. Explain how you can secure a Django application against common web vulnerabilities,
such as CSRF, XSS, and SQL injection.

69. How would you implement a search functionality in a Django application, considering
performance and scalability?

70. Describe the architecture of a typical Django project and the purpose of each directory
(e.g., models, views, templates).

71. Explain how you would integrate a third-party API into a Django application, including
error handling and data validation.

72. How can you use Django's logging framework to monitor and debug a production
application?

73. Discuss the trade-offs between using Django's built-in template engine and alternative
templating languages like Jinja2.

74. How can you optimize the performance of Django templates, such as by using caching
or template inheritance?

75. How does Django's middleware system work, and can you describe a time you
implemented custom middleware to solve a specific problem?

76. Explain the nuances of using class-based views versus function-based views in Django,
detailing when each might be more appropriate.

77. Describe a complex database query you optimized in Django. What tools and
techniques did you use to identify and resolve performance bottlenecks?

78. How do you approach testing in a Django project, and what are your preferred testing
tools and strategies for ensuring code quality?

79. What are the advantages and disadvantages of using Django REST Framework (DRF)
for building APIs, and how does it compare to other API development approaches?

80. Explain how you would implement caching in a Django application, including different
caching strategies and potential challenges.

81. Discuss your experience with deploying Django applications to production
environments, covering topics like server configuration, security considerations, and scaling
strategies.

82. How would you handle a situation where you need to integrate Django with a legacy
system or external API that has limited documentation or support?

83. Describe your approach to securing a Django application against common web
vulnerabilities like Cross-Site Scripting (XSS) and SQL injection.

84. Explain your understanding of Django's ORM and its capabilities. Can you discuss
scenarios where you might choose to use raw SQL queries instead?

85. How would you design and implement a system for handling user authentication and
authorization in a Django application, including considerations for security and scalability?

86. Discuss your experience with Django's template engine and how you would approach
creating reusable and maintainable templates for complex user interfaces.

87. How familiar are you with different message broker systems (e.g., Celery, RabbitMQ)
and their integration with Django for handling asynchronous tasks?

88. Explain your approach to monitoring and logging in a Django application, including the
tools and techniques you would use to identify and troubleshoot issues in production.

89. Describe a time you had to refactor a large Django codebase. What strategies did you
use to minimize risk and ensure the refactoring was successful?

90. How do you keep your Django project's dependencies up to date and manage the risk
of introducing breaking changes from third-party libraries?

91. Can you explain the concept of Django signals and provide examples of how they can
be used to decouple different parts of an application?

92. How would you approach optimizing the performance of a Django application that is
experiencing slow response times due to database-related issues?

93. What are your preferred strategies for handling static files (CSS, JavaScript, images) in a
Django project, especially in a production environment?

94. Discuss your experience with different Django packages and libraries, and how you
evaluate their suitability for a particular project.


