
94 Spring Boot interview questions to hire top engineers

Questions

1. What is Spring Boot, and why do developers use it?

2. Can you explain the concept of 'auto-configuration' in Spring Boot?

3. What are Spring Boot Starters, and how do they simplify dependency management?

4. How would you create a simple 'Hello, World!' application using Spring Boot?

5. What is the purpose of the @̀SpringBootApplicatioǹ annotation?

6. Explain what an embedded server is in the context of Spring Boot.

7. How do you configure different environments (e.g., development, production) in a Spring
Boot application?

8. What are some common Spring Boot annotations you've used or heard of?

9. How does Spring Boot handle exception handling?

10. Can you describe how to access properties defined in àpplication.properties̀ or
àpplication.yml̀?

11. What is the difference between @̀RestController̀ and @̀Controller̀ in Spring Boot?

12. How can you perform database operations using Spring Boot and Spring Data JPA?

13. What is a Spring Bean, and how are beans managed in a Spring Boot application?

14. Explain how Spring Boot simplifies the process of creating RESTful APIs.

15. What are some advantages of using Spring Boot over traditional Spring development?

16. How would you deploy a Spring Boot application to a cloud platform like AWS or
Azure?

17. What is Spring Data REST, and how does it help in building RESTful services?

18. Explain how Spring Boot handles security.

19. How do you add logging to a Spring Boot application?

20. What are Spring Boot Actuators, and what kind of information do they provide?

21. How can you test a Spring Boot application?

22. If you have a Spring Boot application that needs to interact with external APIs, how
would you approach that?

23. What is Spring Boot and why do developers use it?

24. Can you explain the concept of 'auto-configuration' in Spring Boot?

25. What are Spring Boot starters and how do they simplify project setup?

26. How would you create a simple REST API endpoint using Spring Boot?

27. What is the purpose of the @̀SpringBootApplicatioǹ annotation?

28. Explain what a dependency injection is and how Spring Boot helps in achieving that?

29. What is an embedded server in Spring Boot? Why is it useful?

30. How can you configure different environments (dev, prod) in Spring Boot?

31. What are some common Spring Boot annotations you've used?

32. How do you handle exceptions in a Spring Boot application?

33. What is the purpose of àpplication.properties̀ or àpplication.yml̀ file?

34. Explain how to connect to a database using Spring Boot.

35. What is Spring Data JPA? How does it simplify database operations?

36. How do you test a Spring Boot application? What types of tests can you write?

37. What are some advantages of using Spring Boot over traditional Spring?

38. How can you add custom dependencies to your Spring Boot project?

39. What is the role of a p̀om.xml̀ file in a Spring Boot project?

40. Explain the concept of Spring Beans and how they are managed in Spring Boot.

41. How would you secure a Spring Boot API endpoint?

42. What are Spring Boot Actuators? What kind of information do they expose?

43. How do you handle logging in a Spring Boot application?

44. What is a message queue, and how could you use one in a Spring Boot application?

45. If you had a slow-running API endpoint, how would you troubleshoot it using Spring
Boot's tools?

46. How would you deploy a Spring Boot application to a cloud environment?

47. What is the difference between @̀RestController̀ and @̀Controller̀ in Spring Boot?

48. Explain how Spring Boot simplifies the creation of microservices.

49. How does Spring Boot simplify the process of creating scheduled tasks?

50. How does Spring Boot handle auto-configuration, and what are some ways to
customize or disable it?

51. Explain Spring Boot's actuator module and its benefits for monitoring and managing
applications.

52. Describe how you would implement exception handling in a Spring Boot REST API,
including global exception handling.

53. What are Spring Boot starters, and how do they simplify dependency management in a
Spring Boot project?

54. How would you configure different environments (e.g., development, testing,
production) in a Spring Boot application?

55. Explain how Spring Boot integrates with databases using Spring Data JPA. Include
details on repository interfaces.

56. Describe the process of securing a Spring Boot application with Spring Security,
including authentication and authorization.

57. How would you implement caching in a Spring Boot application, and what are some of
the caching providers you can use?

58. Explain how to use Spring Boot's testing support to write unit and integration tests for
your application.

59. Describe how you would configure logging in a Spring Boot application, including
setting log levels and output formats.

60. How can you use Spring Boot to create and consume RESTful web services?

61. Explain how Spring Boot handles transaction management, and how you can use
annotations to control transactions.

62. What are some best practices for deploying a Spring Boot application to a cloud
environment like AWS or Azure?

63. How does Spring Boot support asynchronous processing, and how can you use
annotations like @̀Async̀?

64. Describe the process of creating a custom Spring Boot starter.

65. Explain how Spring Boot simplifies the process of working with message queues like
RabbitMQ or Kafka.

66. How would you monitor your Spring Boot application in production, including metrics
and health checks?

67. Describe how you would configure and use Spring Boot's support for
internationalization (i18n) and localization (l10n).

68. Explain how to use Spring Boot with different types of databases (e.g., relational,
NoSQL).

69. How would you handle file uploads and downloads in a Spring Boot application?

70. Describe how Spring Boot supports building reactive applications with Spring WebFlux.

71. How does Spring Boot's auto-configuration work internally, and how can you customize
or disable specific auto-configurations?

72. Explain your experience with Spring Boot Actuator. What custom metrics have you
implemented, and how did you secure the Actuator endpoints?

73. Describe a scenario where you used Spring Boot's embedded database support (e.g.,
H2). What were the advantages and disadvantages compared to using an external
database?

74. How have you implemented caching in a Spring Boot application? What caching
providers have you used (e.g., Redis, Caffeine), and what are the trade-offs?

75. Explain how you have handled asynchronous tasks in Spring Boot. What are the pros
and cons of using @̀Async̀ vs. a message queue like RabbitMQ or Kafka?

76. Describe your experience with Spring Boot's testing framework. What types of tests
have you written (e.g., unit, integration, end-to-end), and how did you handle testing
external dependencies?

77. How does Spring Boot simplify the process of creating RESTful APIs? What are some
best practices for designing and implementing REST APIs with Spring Boot?

78. Explain how you've handled security in a Spring Boot application. What authentication
and authorization mechanisms have you used (e.g., OAuth2, JWT), and how did you protect
against common web vulnerabilities?

79. How have you used Spring Boot's dependency injection features in complex
applications? Can you provide an example of using constructor injection, setter injection,
and field injection?

80. Describe your experience with Spring Boot's data access features. What ORM
frameworks have you used (e.g., JPA, Hibernate), and how did you optimize database
queries?

81. How have you monitored and managed Spring Boot applications in production? What
tools have you used for logging, metrics, and alerting?

82. Explain how you have used Spring Boot's configuration management features. How did
you handle different environments (e.g., development, testing, production), and how did you
externalize configuration?

83. How would you implement a custom health indicator in Spring Boot Actuator to monitor
a specific aspect of your application?

84. Describe a situation where you needed to create a custom Spring Boot starter. What
were the components you included in the starter, and how did you make it configurable?

85. How do you handle transactions in Spring Boot, especially when dealing with multiple
data sources or microservices?

86. Explain how you would implement rate limiting in a Spring Boot application to protect
against abuse.

87. Describe a scenario where you used Spring Boot's C̀ommandLineRunner̀ or
ÀpplicationRunner̀ interfaces. What kind of tasks did you perform during application
startup?

88. How have you used Spring Boot's profiles feature to manage different application
configurations for various environments?

89. Explain how you would implement a background job scheduler in a Spring Boot
application. What are the pros and cons of using @̀Scheduled̀ vs. a more robust scheduler
like Quartz?

90. How have you handled versioning of REST APIs in a Spring Boot application? What
strategies did you use (e.g., URI versioning, header versioning), and what are the trade-offs?

91. Describe a situation where you used Spring Boot's event publishing and listening
mechanism. What types of events did you publish, and how did you handle them
asynchronously?

92. How do you approach troubleshooting performance issues in Spring Boot applications?
What tools and techniques do you use to identify bottlenecks?


