70 Software Engineer Interview Questions to Ask
Candidates

Questions

. undefined
. undefined
. undefined
. undefined
. undefined
. undefined
. undefined

. undefined

O 00 N o0 o A W N -

. Can you explain the difference between a compiler and an interpreter?

10. What is version control, and why is it important in software development?

11. Describe a simple algorithm to sort a list of numbers.

12. What are the main principles of object-oriented programming?

13. How do you handle tight deadlines in a project?

14. Can you explain what a RESTful APl is and how it works?

15. What do you understand by 'agile methodology'?

16. How would you ensure your code is readable and maintainable?

17. What is a software development lifecycle, and can you describe its stages?

18. Can you explain what unit testing is and why it's important?

19. What are the main differences between front-end and back-end development?
20. How do you approach writing documentation for your code?

21. What is the significance of code reviews in a development team?

22. How would you troubleshoot a performance issue in an application?

23. Can you explain the concept of 'encapsulation' in programming?

24. What strategies would you use to optimize a slow-running application?

25. How would you design a system to handle a sudden spike in user traffic?

26. Explain the concept of 'technical debt' and how you would manage it in a project.
27. How would you approach integrating a third-party APl into an existing application?

28. Describe a situation where you had to optimize a slow-performing database query.
What steps did you take?

29. How would you ensure the security of user data in a web application?

30. Explain the concept of containerization and its benefits in software development.

31. How would you design a scalable notification system for a social media platform?

32. Describe the process of refactoring legacy code. What challenges might you face?
33. How would you implement a rate limiting system to prevent APl abuse?

34. Explain the concept of eventual consistency in distributed systems and its implications.

35. How do you approach designing a microservices architecture for a large-scale
application?

36. Describe a situation where you had to balance trade-offs between performance and
security in your design decisions.

37. How would you implement a continuous integration and continuous deployment
(CI/CD) pipeline for a legacy system?

38. Explain how you would handle data consistency in a distributed database system.

39. What strategies would you employ to ensure seamless integration during a major code
merge in a large development team?

40. Describe your experience with implementing a DevOps culture in your previous
organization.

41. How would you approach designing an application to be cloud-native from the ground
up?

42. Explain how you would manage and mitigate risks when migrating an application to a
cloud environment.

43. What is your process for evaluating and selecting the right technology stack for a new
project?

44. How do you go about designing a highly available and fault-tolerant system?
45. Describe your approach to handling versioning and backward compatibility in APlIs.

46. How would you address technical debt accumulated over several years in a software
project?

47. Can you share your experience with implementing machine learning models in
production environments?

48. How do you ensure compliance with data protection regulations while handling
sensitive user data?

49. What techniques do you use to monitor and improve application performance in real
time?

50. How do you approach writing clean and efficient code?
51. What is your process for handling errors in your code?
52. How do you ensure your code is scalable?

53. Can you explain your approach to code documentation?
54. What methods do you use to optimize code performance?
55. How do you handle code complexity in large projects?
56. What is your approach to testing your code?

57. How do you decide when to refactor code?

58. What strategies do you use to ensure code maintainability?
59. undefined

60. undefined

61. undefined

62. undefined

63. undefined

64. undefined



