
70 Python OOPs interview questions and answers

Questions

�. Can you explain the concept of a class in Python and provide a simple example?

�. What is the difference between a class and an object in Python?

�. How do you create an instance of a class in Python?

�. What is the purpose of the __init__ method in a Python class?

�. Explain the concept of inheritance in Python OOP. How do you implement it?

�. What is method overriding in Python? Provide an example.

�. How does Python support multiple inheritance?

�. What are class variables and instance variables in Python?

�. Explain the use of the 'self' keyword in Python classes.

��. What is encapsulation in Python? How do you implement it?

��. How do you define and use a static method in Python?

��. What is polymorphism in Python? Can you provide a simple example?

��. Explain the difference between public, protected, and private attributes in Python.

��. What are Python decorators and how are they used in OOP?

��. How do you implement abstraction in Python using abstract base classes?

��. Can you explain the concept of composition in Python OOP and how it differs from
inheritance?

��. How would you implement a singleton pattern in Python?

��. What are magic methods in Python and can you give an example of how you might use
one?

��. How does the property decorator work in Python and why is it useful?

��. Explain the concept of method resolution order (MRO) in Python and why it's important
in multiple inheritance scenarios.

��. What are metaclasses in Python and how might you use them?

��. How would you implement a custom iterator in Python?

��. Can you explain the concept of duck typing in Python and how it relates to OOP?

��. How would you use a class method to create alternative constructors in Python?

��. Can you explain the difference between @classmethod and @staticmethod decorators?

��. What is the purpose of the __str__ and __repr__ methods in a class?

��. How can you implement operator overloading in Python? Give an example.

��. Explain the concept of method chaining in Python OOP. How would you implement it?

��. What are mixins in Python and how are they useful in multiple inheritance scenarios?

��. How would you use the @property decorator to create a read-only attribute?

��. Can you explain the difference between shallow copy and deep copy in Python objects?

��. What is the purpose of the __slots__ attribute in a Python class?

��. How would you implement a context manager using a class in Python?

��. Explain the concept of descriptors in Python and provide a use case.

��. What is the difference between __getattr__ and __getattribute__ methods?

��. How can you use the @dataclass decorator in Python? What are its benefits?

��. Explain the concept of method resolution order (MRO) in Python's multiple inheritance.

��. How would you implement a custom exception class in Python?

��. What is the purpose of the __call__ method in a Python class?

��. How can you use abstract base classes to define interfaces in Python?

��. Explain the concept of metaclasses and provide a practical example of their use.

��. Can you explain the Singleton design pattern and its significance in Python OOP?

��. What is the Factory Method design pattern and when would you use it?

��. Can you describe the Observer design pattern and give an example of its application in
Python?

��. What is the Strategy design pattern and how does it improve code flexibility?

��. How does the Decorator design pattern work and when would you apply it?

��. What is the Adapter design pattern and how can it be used in Python?

��. Can you explain the Builder design pattern and its advantages in object creation?

��. Can you explain the difference between single inheritance and multiple inheritance in
Python?

��. What are some advantages and disadvantages of using inheritance in Python?

��. How can you prevent a Python class from being inherited?

��. Can you describe the concept of hierarchical inheritance and give an example in
Python?

��. How does the super() function work in the context of inheritance?

��. What is the difference between method overriding and method overloading in Python?

��. How would you handle diamond problem when using multiple inheritance in Python?

��. Can you provide an example of how to use the ìssubclass() ̀function in Python?

��. Explain the concept of hybrid inheritance and its usage with an example in Python.

��. How does inheritance impact the performance of a Python program?

��. What role does the __mro__ attribute play in inheritance?

��. How can you use inheritance to achieve code reusability in Python?

��. How would you design a system using OOP principles to manage a library, considering
classes for books, members, and transactions?

��. Describe a situation where you would choose composition over inheritance while
designing a so�ware system. Why is it a better choice?

��. How can you implement a dynamic loading of classes based on user input in a Python
application? Provide a brief example.

��. Imagine you need to create a reporting system that requires different report formats.
How would you use polymorphism to achieve this?

��. How would you design a class to handle events in a GUI application? What OOP
principles would guide your implementation?

��. Can you outline your approach to creating a plugin system using OOP concepts in
Python?

��. If you were to create an application that connects to different databases, how would
you apply the Strategy design pattern?

��. How would you handle versioning in an API that uses OOP principles? What strategies
would you implement?

��. In a game development context, how would you utilize inheritance and polymorphism to
manage different types of characters?


