
66 Programming Skills Interview Questions to Ask Your
Candidates

Questions

�. Can you explain the difference between a stack and a queue? Provide an example of
when you'd use each in a real-world application.

�. Walk me through your process for debugging a complex piece of code. What tools or
techniques do you typically employ?

�. How would you optimize a database query that's running slowly? What factors would you
consider?

�. Describe a time when you had to refactor a large codebase. What approach did you take,
and what were the results?

�. How do you ensure your code is secure? Can you give an example of a security
vulnerability you've encountered and how you addressed it?

�. Explain the concept of dependency injection. When and why would you use it in your
projects?

�. How do you approach writing unit tests for your code? Can you describe a situation
where a unit test caught a critical bug?

�. What's your experience with version control systems? How do you handle merge
conflicts in a team setting?

�. Can you explain the principles of SOLID in object-oriented programming? How have you
applied these in your work?

��. Describe a challenging algorithm you've implemented recently. What was the problem,
and how did you solve it?

��. Can you describe the difference between synchronous and asynchronous operations?

��. How do you manage version control in a collaborative project?

��. What steps do you take to ensure code quality?

��. Can you explain the concept of RESTful APIs and how they work?

��. How do you handle errors and exceptions in your code?

��. What is the significance of continuous integration and continuous deployment (CI/CD)?

��. How do you approach learning new technologies or programming languages?

��. Describe a time when you had to work under a tight deadline. How did you manage it?

��. Can you explain the concept of polymorphism in object-oriented programming? How
have you used it in your projects?

��. How do you handle memory management in languages like C++?

��. What is the difference between an abstract class and an interface? In what scenarios
would you use each?

��. Explain the Model-View-Controller (MVC) architecture. Have you used it in your past
projects? Provide an example.

��. How do you approach concurrency in your programs? Can you describe a situation
where you had to manage multiple threads or processes?

��. What is a deadlock? How do you prevent and resolve it in your applications?

��. Describe the concept of microservices architecture. What are its benefits and
challenges?

��. Can you explain what a lambda function is in functional programming?

��. How do you manage API rate limiting in a high-traffic application?

��. What are the key differences between SQL and NoSQL databases? When would you
choose one over the other?

��. Explain what a race condition is and how you mitigate it in your code.

��. Describe a scenario where you had to use a design pattern to solve a problem. Which
pattern did you use and why?

��. How do you ensure the scalability of an application you're developing?

��. What methods do you use to handle large datasets efficiently?

��. Can you discuss a time when you had to implement a caching strategy to improve
application performance?

��. How do you handle technical debt in a long-term project?

��. Can you explain how you would approach building a scalable system?

��. What strategies do you use to ensure your team follows best coding practices?

��. How do you stay updated with the latest trends and technologies in programming?

��. Can you describe a situation where you had to make a trade-off between performance
and maintainability?

��. How would you approach integrating a new technology into an existing system?

��. How do you handle conflicting priorities in a project with tight deadlines?

��. What are some best practices for API design?

��. Can you explain a time when you had to work with a legacy system? What were the
challenges and how did you address them?

��. Can you explain how a hash table works and when you would use one over other data
structures?

��. What's the difference between depth-first search and breadth-first search? When
would you prefer one over the other?

��. Explain the concept of dynamic programming. Can you provide an example of a
problem you've solved using this technique?

��. How would you implement a least recently used (LRU) cache?

��. Can you describe the time and space complexity of quicksort? How does it compare to
other sorting algorithms?

��. What's the difference between a binary tree and a binary search tree? How would you
implement a balanced binary search tree?

��. Explain how you would detect a cycle in a linked list.

��. How would you design a system to find the k most frequent elements in a stream of
data?

��. Can you explain the concept of a trie data structure? What are its advantages and use
cases?

��. How would you implement an efficient algorithm to find the longest palindromic
substring in a given string?

��. Explain the concept of a graph data structure. How would you represent a graph in
code?

��. Can you describe how you would implement a priority queue? What data structure
would you use underneath?

��. Imagine you're tasked with migrating a monolithic application to a microservices
architecture. How would you approach this, and what challenges do you anticipate?

��. You've just joined a team working on a large, poorly documented codebase. How would
you familiarize yourself with the project and start contributing effectively?

��. A critical production bug has been reported affecting user data. Walk me through your
process for identifying, fixing, and preventing similar issues in the future.

��. Your team is debating whether to build a feature in-house or use a third-party library.
What factors would you consider in making this decision?

��. You're working on a feature that requires integrating with an unreliable external API.
How would you design your solution to handle potential failures gracefully?

��. Your application is experiencing performance issues during peak hours. How would you
go about diagnosing and addressing these problems?

��. You've been asked to implement a new authentication system for your company's web
applications. What security considerations would you keep in mind?

��. A junior developer on your team has written some inefficient code. How would you
approach providing feedback and mentoring them to improve?

��. You're tasked with optimizing the database queries for a data-intensive application.
What steps would you take to improve query performance?

��. Your team is considering adopting a new programming language for an upcoming
project. How would you evaluate its suitability and potential impact?

��. You've discovered that a critical library your project depends on is no longer
maintained. What steps would you take to address this situation?


