66 Programming Skills Interview Questions to Ask Your
Candidates

Questions
1. Can you explain the difference between a stack and a queue? Provide an example of
when you'd use each in a real-world application.

2. Walk me through your process for debugging a complex piece of code. What tools or
techniques do you typically employ?

3. How would you optimize a database query that's running slowly? What factors would you
consider?

4. Describe a time when you had to refactor a large codebase. What approach did you take,
and what were the results?

5. How do you ensure your code is secure? Can you give an example of a security
vulnerability you've encountered and how you addressed it?

6. Explain the concept of dependency injection. When and why would you use it in your
projects?

7. How do you approach writing unit tests for your code? Can you describe a situation
where a unit test caught a critical bug?

8. What's your experience with version control systems? How do you handle merge
conflicts in a team setting?

9. Can you explain the principles of SOLID in object-oriented programming? How have you
applied these in your work?

10. Describe a challenging algorithm you've implemented recently. What was the problem,
and how did you solve it?

11. Can you describe the difference between synchronous and asynchronous operations?
12. How do you manage version control in a collaborative project?

13. What steps do you take to ensure code quality?

14. Can you explain the concept of RESTful APIs and how they work?

15. How do you handle errors and exceptions in your code?

16. What is the significance of continuous integration and continuous deployment (CI/CD)?
17. How do you approach learning new technologies or programming languages?

18. Describe a time when you had to work under a tight deadline. How did you manage it?

19. Can you explain the concept of polymorphism in object-oriented programming? How
have you used it in your projects?

20. How do you handle memory management in languages like C++?

21. What is the difference between an abstract class and an interface? In what scenarios
would you use each?

22. Explain the Model-View-Controller (MVC) architecture. Have you used it in your past
projects? Provide an example.

23. How do you approach concurrency in your programs? Can you describe a situation
where you had to manage multiple threads or processes?

24. What is a deadlock? How do you prevent and resolve it in your applications?

25. Describe the concept of microservices architecture. What are its benefits and
challenges?

26. Can you explain what a lambda function is in functional programming?
27. How do you manage APl rate limiting in a high-traffic application?

28. What are the key differences between SQL and NoSQL databases? When would you
choose one over the other?

29. Explain what a race condition is and how you mitigate it in your code.

30. Describe a scenario where you had to use a design pattern to solve a problem. Which
pattern did you use and why?

31. How do you ensure the scalability of an application you're developing?
32. What methods do you use to handle large datasets efficiently?

33. Can you discuss a time when you had to implement a caching strategy to improve
application performance?

34. How do you handle technical debt in a long-term project?

35. Can you explain how you would approach building a scalable system?

36. What strategies do you use to ensure your team follows best coding practices?

37. How do you stay updated with the latest trends and technologies in programming?

38. Can you describe a situation where you had to make a trade-off between performance
and maintainability?

39. How would you approach integrating a new technology into an existing system?
40. How do you handle conflicting priorities in a project with tight deadlines?
41. What are some best practices for APl design?

42. Can you explain a time when you had to work with a legacy system? What were the
challenges and how did you address them?

43. Can you explain how a hash table works and when you would use one over other data
structures?

44. What's the difference between depth-first search and breadth-first search? When
would you prefer one over the other?

45. Explain the concept of dynamic programming. Can you provide an example of a
problem you've solved using this technique?

46. How would you implement a least recently used (LRU) cache?

47. Can you describe the time and space complexity of quicksort? How does it compare to
other sorting algorithms?

48. What's the difference between a binary tree and a binary search tree? How would you
implement a balanced binary search tree?

49. Explain how you would detect a cycle in a linked list.

50. How would you design a system to find the k most frequent elements in a stream of
data?

51. Can you explain the concept of a trie data structure? What are its advantages and use
cases?

52. How would you implement an efficient algorithm to find the longest palindromic
substring in a given string?

53. Explain the concept of a graph data structure. How would you represent a graph in
code?

54. Can you describe how you would implement a priority queue? What data structure
would you use underneath?

55. Imagine you're tasked with migrating a monolithic application to a microservices
architecture. How would you approach this, and what challenges do you anticipate?

56. You've just joined a team working on a large, poorly documented codebase. How would
you familiarize yourself with the project and start contributing effectively?

57. A critical production bug has been reported affecting user data. Walk me through your
process for identifying, fixing, and preventing similar issues in the future.

58. Your team is debating whether to build a feature in-house or use a third-party library.
What factors would you consider in making this decision?

59. You're working on a feature that requires integrating with an unreliable external API.
How would you design your solution to handle potential failures gracefully?

60. Your application is experiencing performance issues during peak hours. How would you
go about diagnosing and addressing these problems?

61. You've been asked to implement a new authentication system for your company's web
applications. What security considerations would you keep in mind?

62. A junior developer on your team has written some inefficient code. How would you
approach providing feedback and mentoring them to improve?

63. You're tasked with optimizing the database queries for a data-intensive application.
What steps would you take to improve query performance?

64. Your team is considering adopting a new programming language for an upcoming
project. How would you evaluate its suitability and potential impact?

65. You've discovered that a critical library your project depends on is no longer
maintained. What steps would you take to address this situation?



