
57 Junior Software Developer interview questions to ask
your applicants

Questions

1. Can you explain the difference between a stack and a queue? Provide an example of
when you might use each in a real-world application.

2. How would you approach debugging a program that compiles successfully but produces
unexpected output?

3. What's your understanding of version control, and how have you used it in your projects?

4. Can you walk me through your process for writing clean, maintainable code?

5. How would you explain the concept of Object-Oriented Programming to someone with
no coding experience?

6. What's your approach to handling errors and exceptions in your code?

7. Can you describe a time when you had to optimize a piece of code for better
performance? What steps did you take?

8. How do you stay updated with the latest programming languages and technologies?

9. Can you explain the importance of code reviews and how you would conduct one?

10. If you were tasked with creating a simple web application, what technologies would you
choose and why?

11. How do you prioritize tasks when working on a project with tight deadlines?

12. Describe a situation where you had to work with a difficult team member. How did you
handle it?

13. How would you explain a complex technical concept to a non-technical person?

14. What steps do you take to ensure your work is of high quality?

15. How do you handle feedback or criticism about your work?

16. What do you enjoy most about software development?

17. How do you ensure you work effectively in a remote team?

18. Can you describe a time you had to learn a new technology quickly? How did you
approach it?

19. Can you discuss a project where you had to use an API? How did you integrate it into
your application?

20. Describe how you would refactor code that you inherit from another developer.

21. What is your experience with test-driven development, and how do you implement it in
your projects?

22. Explain a situation where you had to resolve a merge conflict in a team project.

23. Can you give an example of when you used data structures to solve a problem?

24. How do you balance the need for fast delivery with the need for quality code?

25. Describe a time you had to troubleshoot a challenging technical issue.

26. What is your process for ensuring that your code is scalable?

27. How do you approach learning a new framework or library?

28. Can you explain the difference between synchronous and asynchronous programming?

29. How would you approach a situation where a stakeholder demands a feature that might
jeopardize the project timeline?

30. What methods do you use to ensure that your application is secure?

31. How do you approach learning a new technology or tool that is essential for your
project?

32. Can you explain a time when you had to make a decision between two competing
priorities in a project?

33. Describe a time when you had to adapt to a major change in a project. How did you
handle it?

34. How do you ensure that your team members are aligned and working towards the same
goals?

35. What strategies do you use to keep up with the latest industry trends?

36. How would you handle a situation where you are assigned a project that requires skills
you are not familiar with?

37. How do you handle conflicts in a team setting?

38. How do you manage your time and prioritize tasks when working on multiple projects?

39. What steps do you take to ensure that a project meets quality standards before
delivery?

40. How do you ensure your code is readable and understandable for others who may work
on it in the future?

41. What strategies do you use to write unit tests for your code? Can you provide an
example?

42. Can you describe your approach to working with legacy code? What challenges have
you faced?

43. How do you decide which coding standards and style guides to follow in a project?

44. What is your understanding of code complexity, and how do you manage it in your
projects?

45. How do you handle situations when you realize that your code may not be the best
solution to a problem?

46. Can you explain the concept of DRY (Don't Repeat Yourself) and how you apply it in
your coding?

47. How do you approach documentation for your code, and why do you think it is
important?

48. What role does pair programming play in your development process, if any?

49. How do you prioritize writing tests during the development cycle?

50. What methods do you use to debug code that isn’t working as expected? Can you
provide a specific example?

51. Can you describe your experience with databases? How do you interact with them in
your projects?

52. What is your approach to writing and maintaining documentation for your code?

53. How do you ensure that your code is efficient? Can you give an example of a time when
you improved the efficiency of an algorithm?

54. Can you explain the concept of RESTful APIs and how you have used them in your
projects?

55. What do you understand by the term 'agile development'? How have you applied agile
methodologies in your work?

56. Can you discuss your experience with front-end technologies? Which frameworks or
libraries have you used?


