
135 SOLID interview questions to ask your applicants

Questions

1. Imagine you're building a toy robot. How would you design its code so that adding new
actions (like dancing or singing) doesn't require you to rewrite the whole robot's brain?

2. Let's say you have a box of LEGOs. Some are red, some are blue. How would you
organize them so you can easily find all the red LEGOs without messing up the blue ones?

3. Pretend you have a magic wand that can do different things like make it rain or make it
snow. How would you make sure each spell does only its job and doesn't accidentally
change something else?

4. If you have a toy car that can drive and beep, how would you make sure you can change
the way it beeps without having to rebuild the whole car?

5. You're building a program to draw shapes. How would you make sure you can add new
shapes (like triangles or stars) without breaking the code that draws the existing shapes (like
circles and squares)?

6. You have a remote control with buttons for volume, channel, and power. If you want to
add a new button for 'record', how would you do it without changing the way the other
buttons work?

7. If a class has multiple responsibilities, what problems can arise later in the project?

8. What do you understand by the 'Open/Closed Principle'? Give a real-world example.

9. Why is the 'Liskov Substitution Principle' important when using inheritance?

10. What is the main goal of the 'Interface Segregation Principle'?

11. Explain what 'Dependency Inversion Principle' means to you. Can you provide an
example?

12. Can you describe a scenario where a class violates the Single Responsibility Principle,
and what refactoring steps would you take?

13. Let’s say you have a class that saves data to a database. If you later want to save data to
a file instead, how would you design the class to make this change easy, applying SOLID
principles?

14. Imagine you have a base class called 'Animal' with a method 'makeSound'. You have
subclasses like 'Dog' and 'Cat'. How can you ensure that the 'Liskov Substitution Principle' is
followed in this scenario?

15. Suppose you have an interface with many methods, but a class only needs to
implement a few of them. How does this violate the Interface Segregation Principle, and
how could you fix it?

16. Think of a system where different modules are tightly coupled. What are the
disadvantages, and how can the Dependency Inversion Principle help to improve the
design?

17. Describe a situation where applying SOLID principles might be overkill. What are the
tradeoffs?

18. Have you ever encountered code that was difficult to maintain or extend? How could
SOLID principles have helped in that situation?

19. How would you explain the benefits of using SOLID principles to a non-technical
person?

20. If you have a class that depends on another class directly, how can you use
Dependency Injection to improve the design?

21. How does adhering to SOLID principles affect the testability of your code?

22. Imagine you need to add a new feature to an existing system, and the original code
doesn't follow SOLID principles. What are some potential challenges, and how would you
approach the task?

23. Imagine you're building a toy car. How would you design it so you can easily swap out
the wheels for different types, like big off-road tires or small racing tires, without changing
the whole car?

24. Let's say you have a box of LEGOs. You want to build different things, like a house or a
car, using the same LEGOs. How do you make sure each thing you build follows its own
rules and doesn't mess up the other things?

25. If you have a robot that can do many things, like walk, talk, and dance, what's a good
way to organize its abilities so it's easy to add new abilities without breaking the old ones?

26. Think about a set of instructions for making a sandwich. How do you make the
instructions clear and simple so anyone can follow them, even if they've never made a
sandwich before?

27. Suppose you have a program that prints reports. What are the problems with modifying
the same function to print to the console, a file, or a printer?

28. Explain how you would approach designing a class that needs to be extended in the
future but should not be modified directly.

29. If a class has too many responsibilities, what are some signs that it needs to be broken
down into smaller, more focused classes?

30. How can you ensure that different modules of your code can be easily swapped out or
replaced without affecting other parts of the application?

31. Why is it important to avoid tightly coupling different parts of your code, and what are
some techniques to achieve loose coupling?

32. If you have a base class with several subclasses, how do you ensure that each subclass
can be used wherever the base class is expected without unexpected behavior?

33. Consider a scenario where you have a system for managing different types of
employees (e.g., hourly, salaried). How would you structure your code to adhere to the
Single Responsibility Principle?

34. How does the Open/Closed Principle relate to writing maintainable and extensible
code? Provide an example.

35. Describe a situation where violating the Liskov Substitution Principle could lead to
unexpected bugs or errors in your application.

36. How does the Interface Segregation Principle help in designing cleaner and more
focused interfaces for classes?

37. Explain the benefits of using Dependency Inversion Principle in managing
dependencies between different modules of your code.

38. You have a class that handles both user authentication and session management. How
can you refactor it to follow the Single Responsibility Principle?

39. Imagine you have a logging class. How could you design it so it can easily support
different logging targets (e.g., file, database, console) without modifying the core class?

40. You have a base class Ànimal̀ with a method m̀akeSound().̀ You create a subclass D̀og̀
that overrides m̀akeSound() ̀to bark. What could go wrong if a C̀at̀ class tried to extend D̀og̀
instead of Ànimal̀ directly?

41. You have an interface with several methods, but a class only needs to implement one of
them. How can you apply the Interface Segregation Principle to improve the design?

42. How can you use Dependency Injection to make your classes more testable and less
dependent on concrete implementations?

43. You have a class that calculates area of different shapes and the logic is implemented
using if/else conditions. What are the SOLID principles being violated and how can it be
refactored?

44. Why might it be a bad idea to create a general-purpose class that attempts to handle
every possible type of input or situation?

45. Let's say you have a function that needs to perform several steps, such as reading data
from a file, processing the data, and writing the results to a database. How might you apply
the Single Responsibility Principle to this function?

46. You have a class that sends notifications to users, but it currently only supports email.
How can you design it so that it can easily support other notification methods like SMS or
push notifications in the future, following the Open/Closed Principle?

47. You have a base class called S̀hapè with methods to calculate area and perimeter. You
create a subclass called R̀ectanglè. What problems might arise if you later create a subclass
called C̀irclè that inherits from S̀hapè?

48. You have an interface called Ẁorker̀ with methods for working, eating, and sleeping.
However, not all workers need to eat or sleep. How can you improve this design using the
Interface Segregation Principle?

49. How can you use a Dependency Injection container to manage dependencies between
different parts of your application, and what are the benefits of doing so?

50. What are some practical ways you can determine if a class is violating the Single
Responsibility Principle in a real-world project?

51. Explain a scenario where using inheritance might not be the best approach, and how
you could achieve the same result using composition, and how does it relate to SOLID
principles?

52. Explain the Liskov Substitution Principle with a real-world analogy, focusing on a
scenario where violating it leads to unexpected behavior.

53. How can you identify potential violations of the Dependency Inversion Principle in
existing code, and what refactoring strategies can you use to address them?

54. Describe a situation where applying the Single Responsibility Principle might lead to a
proliferation of small classes, and how you would manage that complexity.

55. Discuss the trade-offs between adhering strictly to the Open/Closed Principle and the
need for timely feature delivery.

56. Explain how the SOLID principles can contribute to building a more maintainable
microservices architecture.

57. How does understanding SOLID principles aid in debugging and troubleshooting
complex software systems?

58. Describe a design pattern that complements or reinforces one of the SOLID principles,
and explain how they work together.

59. How can you use unit testing to verify adherence to the SOLID principles in your code?

60. Explain how the SOLID principles relate to the concept of code cohesion and coupling.

61. How can you balance the benefits of SOLID principles with the potential for over-
engineering in a project?

62. Illustrate the impact of the Interface Segregation Principle on client code when dealing
with a complex interface.

63. Explain a scenario where applying the Open/Closed Principle might introduce
unnecessary abstraction.

64. How can the Dependency Inversion Principle improve the testability of a software
component?

65. Describe how violating the Liskov Substitution Principle can lead to unexpected runtime
errors.

66. Discuss strategies for educating a development team about the SOLID principles and
promoting their adoption.

67. How can you use static analysis tools to help enforce the SOLID principles in a
codebase?

68. Explain how the SOLID principles relate to the concept of code reusability.

69. How can you refactor a class that violates the Single Responsibility Principle into
multiple, more focused classes?

70. Describe a situation where applying the Interface Segregation Principle might increase
code complexity.

71. Discuss the role of SOLID principles in agile software development methodologies.

72. Explain the relationship between SOLID principles and design patterns.

73. How does the Single Responsibility Principle aid in parallel development by multiple
developers?

74. Explain a time when you had to make a judgement call to deviate from a SOLID
principle. What considerations led to that decision?

75. Let's say you have an anti-corruption layer. How can the SOLID principles be applied
*within* that layer to improve maintainability.

76. How do the SOLID principles apply in a dynamically typed language compared to a
statically typed language?

77. Imagine you inherit a large legacy system. What's your approach for applying SOLID
principles gradually without disrupting existing functionality?

78. How do SOLID principles relate to Domain-Driven Design (DDD) concepts like Entities,
Value Objects, and Aggregates?

79. What are the challenges of applying SOLID to data-heavy applications that rely heavily
on database interactions and object-relational mapping (ORM)?

80. Let’s say you have a class that requires multiple dependencies. What are some
strategies, in line with SOLID, to manage that class's dependencies effectively?

81. Explain how SOLID principles can guide the design of RESTful APIs and promote their
long-term evolution.

82. How have you used SOLID principles to refactor legacy code, and what were the
biggest challenges you faced?

83. Describe a time when you intentionally violated a SOLID principle and why.

84. Explain how you would design a system to be highly extensible using SOLID principles,
providing specific examples.

85. What are some potential drawbacks of strictly adhering to SOLID principles in every
situation?

86. How do SOLID principles relate to other design patterns, such as strategy or template
method?

87. Explain how you would test code that adheres to SOLID principles versus code that
does not.

88. Describe a scenario where applying the Interface Segregation Principle improved the
maintainability of a project.

89. How do you ensure that your team understands and applies SOLID principles
consistently?

90. Explain how the Liskov Substitution Principle can prevent unexpected behavior in a
system.

91. Discuss how SOLID principles contribute to reducing technical debt in a software
project.

92. How would you approach a code review to identify violations of SOLID principles?

93. Describe a situation where applying the Dependency Inversion Principle made testing
easier.

94. Explain how you balance SOLID principles with other important considerations like
performance and time constraints.

95. Discuss how SOLID principles relate to microservices architecture.

96. How do you handle situations where different SOLID principles seem to conflict with
each other?

97. Explain how you would convince a team to adopt SOLID principles if they are resistant
to change.

98. Describe how you have used SOLID principles in the context of a specific project you
worked on, detailing the before and after.

99. How would you explain the Open/Closed Principle to a junior developer in a way that is
easy to understand?

100. Explain how SOLID principles can help in designing a RESTful API.


