
104 Java 8 interview questions to ask your applicants

Questions

1. What new features did Java 8 bring to the table, and which one excites you the most?

2. Can you explain what a lambda expression is in simple terms, and provide a basic
example?

3. What are functional interfaces, and how are they related to lambda expressions?

4. What is the purpose of the S̀tream̀ API in Java 8, and how does it make working with
collections easier?

5. Explain the difference between f̀orEach ̀and s̀tream().forEach().̀

6. What are the benefits of using the Stream API, and can you give a practical scenario
where you would use it?

7. How can you sort a list of objects using lambda expressions and the Stream API?

8. What is the purpose of Òptional̀ in Java 8, and how does it help avoid
NullPointerExceptions?

9. Can you explain method references in Java 8, and provide an example of how they
simplify lambda expressions?

10. What is the difference between m̀ap̀ and f̀latMap̀ operations in the Stream API?

11. How do you group elements of a collection using the Stream API?

12. What are the parallel streams in Java 8, and when would you use them?

13. Explain the differences between C̀ollectioǹ and S̀tream̀ interfaces.

14. How can you filter elements from a collection using the Stream API?

15. What are the advantages of using immutable collections in Java 8?

16. What are the key differences between the f̀ilter̀ and m̀ap̀ operations in Java 8 streams?

17. How do you convert a S̀tream̀ back into a L̀ist̀ or S̀et̀?

18. Can you explain the concept of 'lazy evaluation' in the context of Java 8 Streams?

19. How does Java 8's L̀ocalDatè and L̀ocalDateTimè improve upon the old D̀atè class?

20. Explain what default methods are in interfaces and why they were introduced in Java 8.

21. How can you use the r̀educè operation in the Stream API to find the sum of numbers in
a list?

22. What is the significance of the @̀FunctionalInterfacè annotation?

23. In what ways did Java 8 improve the handling of date and time, and why was it
needed?

24. Describe a scenario where you would use a lambda expression instead of an
anonymous class.

25. How would you find the maximum value in a list of integers using streams?

26. Explain how to use the C̀ollectors.groupingBỳ method in Java 8.

27. What are the potential drawbacks or considerations when using parallel streams?

28. Can you give an example of using a method reference to call a constructor?

29. Explain the difference between intermediate and terminal operations in Java 8 streams.
Give examples.

30. What is the difference between C̀ollectioǹ and S̀tream̀ in Java 8?

31. Can you explain what Lambda Expressions are and give a simple example?

32. What are functional interfaces? Can you name a few built-in functional interfaces in
Java 8?

33. How do you use the f̀orEach ̀method with Lambda Expressions to iterate over a list?

34. What is the purpose of the Òptional̀ class? How can you avoid NullPointerExceptions
using it?

35. What are the key advantages of using streams in Java 8?

36. Describe the difference between intermediate and terminal operations in Java Streams.
Give examples of each.

37. How would you use the m̀ap̀ operation in a Stream to transform a list of strings to
uppercase?

38. Explain how you can use the f̀ilter̀ operation in a Stream to select only even numbers
from a list of integers?

39. What is method referencing in Java 8 and when would you use it?

40. How do you sort a list of objects using Lambda Expressions in Java 8?

41. Explain the difference between P̀redicatè, F̀unctioǹ, C̀onsumer̀, and S̀upplier̀ functional
interfaces.

42. How can you convert a C̀ollectioǹ to a S̀tream̀ in Java 8?

43. What are the limitations of using parallel streams? When is it not a good idea to use
them?

44. Explain how to use the r̀educè operation to find the sum of all elements in a stream.

45. How can you group elements of a stream based on a certain criteria using g̀roupingBỳ?

46. What is the purpose of the f̀latMap̀ operation in Java 8 streams?

47. Explain what is the difference between f̀indFirst̀ and f̀indAnỳ methods in Java Streams.

48. How do you handle exceptions inside a Lambda Expression?

49. What is the purpose of default methods in interfaces in Java 8? Give an example.

50. How can you create a stream from an array in Java 8?

51. Explain how to use the p̀eek̀ operation in a Stream for debugging purposes.

52. What is the difference between ànyMatch,̀ àllMatch,̀ and ǹoneMatch ̀in Java Streams?

53. How can you use multiple f̀ilter̀ operations in a single Stream pipeline?

54. Explain how you can use Òptional̀ to handle situations where a stream might return no
elements.

55. What is the purpose of C̀ollectors̀ in Java 8 streams? Give some examples of common
collectors.

56. How would you find the maximum or minimum value in a stream of numbers using Java
8?

57. Describe a scenario where you would use a parallel stream to improve performance.

58. Explain how the d̀istinct̀ operation works in a Java 8 stream.

59. How does the f̀latMap̀ operation in Java 8 Streams differ from m̀ap̀, and when would
you choose one over the other? Explain with a simple use case.

60. Explain the concept of 'lazy evaluation' in the context of Java 8 Streams. Why is it
beneficial, and how does it impact performance?

61. Describe the purpose of the Òptional̀ class in Java 8. How does it help prevent
NullPointerExceptions, and what are some best practices for using it?

62. Can you explain how method references (:̀:)̀ work in Java 8, and provide examples of
different types of method references (static, instance, constructor)?

63. What are the key differences between C̀ollection.stream() ̀and
C̀ollection.parallelStream() ̀in Java 8? When would you prefer one over the other, and what
are the potential pitfalls of using p̀arallelStream()?̀

64. Explain the use of C̀ollectors.groupingBy() ̀in Java 8 Streams. Provide an example of
how you would group a list of objects based on a specific property.

65. How does Java 8's C̀ompletableFuturè class simplify asynchronous programming
compared to traditional F̀uturè objects? Explain with an example.

66. Describe how you would use Java 8's L̀ocalDatè, L̀ocalTimè, and L̀ocalDateTimè classes
for handling dates and times. What are the advantages of using these classes over the older
j̀ava.util.Datè class?

67. Explain the concept of 'functional interfaces' in Java 8. What is the
@̀FunctionalInterfacè annotation, and why is it used?

68. How can you create custom functional interfaces in Java 8, and what are some practical
use cases for them?

69. Describe the differences between f̀orEach ̀and f̀orEachOrdered̀ methods in Java 8
Streams. When should you use one over the other?

70. How does the r̀educè operation in Java 8 Streams work, and how can you use it to
perform calculations on a stream of elements? Give an example.

71. Explain how to use C̀ollectors.toMap() ̀to convert a Java 8 Stream into a M̀ap̀. What are
the potential issues with duplicate keys, and how can you handle them?

72. How can you use Java 8 Streams to efficiently process large files, and what are some
techniques for optimizing performance?

73. Describe the purpose of the p̀eek̀ operation in Java 8 Streams. How can it be useful for
debugging or logging stream operations?

74. Explain the use of C̀ollectors.partitioningBy() ̀in Java 8 Streams. How does it differ from
g̀roupingBy() ̀and when is it useful?

75. How can you chain multiple C̀ompletableFuturè instances together to create complex
asynchronous workflows in Java 8?

76. Describe how to use Java 8's D̀uratioǹ and P̀eriod̀ classes for measuring time intervals
and date differences. Provide examples.

77. Explain how to use default methods in interfaces in Java 8. What problem do they solve,
and what are some potential conflicts that can arise when using them?

78. How do you resolve conflicts when a class inherits multiple default methods with the
same signature from different interfaces in Java 8?

79. How would you design a system using Java 8 features to process large datasets in
parallel, ensuring optimal CPU utilization and minimal memory footprint?

80. Explain how you would use the 'CompletableFuture' API to handle asynchronous
operations and combine the results of multiple independent services in a reactive
application?

81. Describe a scenario where using 'StampedLock' would be more advantageous than
'ReentrantReadWriteLock', and explain the potential risks associated with using
'StampedLock' incorrectly.

82. How can you leverage Java 8's functional interfaces and lambda expressions to
implement a custom retry mechanism for handling transient failures in a distributed system?

83. Explain how you would use the Stream API to efficiently process a collection of objects
and group them based on multiple complex criteria, while also applying aggregations to
each group.

84. Describe how you can use Optional to avoid NullPointerExceptions in a legacy
codebase and what are the potential drawbacks of overusing Optional.

85. How do you use the new Date and Time API to handle different time zones and daylight
saving time in a global application?

86. Explain the difference between map() and flatMap() operations in Java 8 streams and
provide a use case for each.

87. Describe how you would implement a custom collector to perform a specific
aggregation operation that is not provided by the standard collectors.

88. How can you use method references to make your code more readable and
maintainable, and when should you avoid using them?

89. Explain how you would use the Stream API to perform complex data transformations
and aggregations in a parallel and efficient manner.

90. Describe a scenario where you would use the 'computeIfAbsent' method of the
ConcurrentHashMap and explain the potential performance implications.

91. How can you use the Java 8's 'Files' API to efficiently read and process large text files,
and what are the best practices for handling character encoding?

92. Explain the difference between the 'peek' and 'forEach' methods in Java 8 streams and
provide a use case for each.

93. Describe how you would implement a custom spliterator to efficiently process a large
dataset in parallel using the Stream API.

94. How can you use the Java 8's Nashorn engine to execute JavaScript code within a Java
application, and what are the potential security risks?

95. Explain how you would use the 'reduce' method of the Stream API to perform complex
aggregations on a collection of objects.

96. Describe a scenario where you would use the 'merge' method of the
ConcurrentHashMap and explain the potential concurrency issues.

97. How can you use the Java 8's Base64 API to encode and decode binary data, and what
are the different encoding options available?

98. Explain how you would use the 'anyMatch', 'allMatch', and 'noneMatch' methods in Java
8 streams to perform complex data validation.

99. Describe how you would implement a custom stream pipeline to perform a specific data
processing task that is not easily achieved with the standard stream operations.

100. What are the advantages and disadvantages of using lambda expressions versus
anonymous classes?

101. How does the '::' operator work, and can you give examples of when it is best used?


