
102 Python OOPs interview questions and answers

Questions

1. What is a class, like a blueprint, in Python?

2. Explain objects in Python. Think of them as real things!

3. What is inheritance, like getting traits from your parents, in Python classes?

4. Describe polymorphism. Can one thing do many things?

5. What is encapsulation, like keeping secrets safe, in Python?

6. How do you make a new object from a class in Python?

7. What does the _̀_init__ ̀function do in a Python class? Is it like setting up a new toy?

8. What is s̀elf ̀in a Python class? Is it like saying 'me'?

9. How can one class inherit properties from another in Python?

10. What's the difference between a class and an object in Python?

11. Can you explain method overriding? It's like changing a behavior!

12. What are class variables and instance variables in Python? Where do we use them?

13. How do you access attributes and methods of a class?

14. What are the benefits of using OOPs in Python? Why is it useful?

15. Explain the concept of abstraction in Python. Like hiding the complicated parts.

16. Describe different types of inheritance supported by Python. How are they different?

17. What is the purpose of using access modifiers (public, private, protected) in Python
classes, and how do they affect accessibility?

18. How does the s̀uper() ̀function work in Python inheritance? Why use it?

19. What are getter and setter methods in Python? Are they important?

20. Explain the diamond problem in multiple inheritance and how Python resolves it. What
does it entail?

21. How do you define a method that belongs to the class itself rather than an instance in
Python?

22. Can you give an example of using composition in Python OOP? When is it used?

23. What is the difference between ìsinstance() ̀and ìssubclass() ̀in Python? How would you
use them?

24. How do you handle exceptions within a class method in Python? What is the general
approach?

25. Explain the use of abstract classes and methods in Python using the àbc̀ module. Why
and when do we need them?

26. Imagine you're building a toy box. How would you organize different types of toys (like
cars and dolls) using Python classes?

27. If a class is like a blueprint for a house, what's an object in Python, in relation to the
blueprint?

28. What does it mean when we say a class has 'attributes'? Can you give a simple
example?

29. Explain in simple terms, what's the purpose of '__init__' method in a Python class?

30. Let's say you have a 'Dog' class. How would you give each dog object a name and a
breed using Python?

31. What's the difference between a class and an object in Python? Use a 'cookie cutter'
analogy.

32. What is 'self' in a Python class method? Imagine you are talking about yourself to a
friend, how would you compare it?

33. Explain the basic idea of 'inheritance' in Python OOP, using a parent and child
relationship analogy.

34. If you have a 'Vehicle' class, how could you create a 'Car' class that inherits from it in
Python?

35. What are the benefits of using classes and objects in Python? Think about organizing
your toys or school assignments.

36. Can you explain what a 'method' is in a Python class? Give an example of a method a
'Cat' class might have.

37. How do you create an object of a class in Python? Show with a simple example.

38. What is 'encapsulation' in OOP? Think about how a TV remote hides the complex
electronics inside.

39. Imagine you have a 'Shape' class. How could you make 'Circle' and 'Square' classes that
are special types of 'Shape'?

40. Why would you use classes instead of just writing a bunch of separate functions? Think
about organizing a messy room.

41. Explain the difference between attributes defined inside __init__ and outside __init__
within a class.

42. What does 'instantiation' mean in the context of Python classes and objects?

43. If you have a 'Bird' class, how would you define a method that makes the bird 'fly'?

44. Let's say you want to protect an attribute of a class from being changed directly from
outside the class. How can you achieve this?

45. What are the advantages of using inheritance in Python OOP? Consider code
reusability.

46. How do you call a method on an object in Python? Can you show an example?

47. Explain the concept of 'data hiding' in OOP. Relate it to keeping secrets safe.

48. What would be a good real-world example where using classes and objects would
make code easier to manage?

49. How can you add a new attribute to an existing object after it has been created?

50. Explain the concept of method overriding in Python OOP. Can you provide a practical
example?

51. What is the purpose of the s̀uper() ̀function in Python? How does it facilitate
inheritance?

52. Describe the difference between abstract classes and interfaces in Python. When would
you use one over the other?

53. How does Python handle multiple inheritance? What are some potential issues that can
arise, and how can you resolve them?

54. What are Python's class methods? Explain the @̀classmethod̀ decorator with an
example.

55. What are Python's static methods? Explain the @̀staticmethod̀ decorator with an
example.

56. Explain the concept of polymorphism in Python OOP. Provide an example to illustrate
its use.

57. How can you achieve encapsulation in Python? Explain the use of naming conventions
for private and protected members.

58. Describe the concept of composition in Python OOP. How does it differ from
inheritance, and when is it preferred?

59. What are Python's properties, and how do they provide controlled access to class
attributes? Explain with an example.

60. How can you implement a custom iterator in Python using OOP principles?

61. What is a metaclass in Python? How can you use it to control class creation?

62. Explain the use of the _̀_slots__ ̀attribute in Python classes. What are its benefits and
drawbacks?

63. How can you implement a context manager using classes in Python? Explain the use of
_̀_enter__ ̀and _̀_exit__ ̀methods.

64. Explain the concept of duck typing in Python. How does it relate to OOP principles?

65. How would you design a class that can be used with the ẁith ̀statement for resource
management? Show the implementation.

66. Describe how you can use Python's data descriptors (_̀_get__,̀ _̀_set__,̀ _̀_delete__)̀ to
control attribute access.

67. Explain the differences between ìsinstance() ̀and ìssubclass() ̀in Python. How are they
used in OOP?

68. How can you overload operators in Python classes (e.g., +̀,̀ -̀,̀ *̀)̀? Provide an example.

69. What is the purpose of the _̀_new__ ̀method in Python classes? How does it differ from
_̀_init__?̀

70. Explain how you can serialize and deserialize Python objects using the p̀icklè module.
What are some security considerations?

71. Describe the concept of dependency injection in Python OOP. How can it improve code
maintainability and testability?

72. What are mixins in Python? How can they be used to add functionality to classes
without using multiple inheritance in a complex way?

73. How would you implement a custom iterator in Python that supports multiple
independent iterations simultaneously?

74. Explain the nuances of using metaclasses for advanced class customization and control
in Python. Provide a real-world scenario.

75. Describe the differences between abstract base classes (ABCs) and interfaces in Python
and their respective use cases.

76. How can you achieve true data hiding in Python, given that all attributes are technically
accessible?

77. Explain how the _̀_slots__ ̀attribute can impact memory usage and performance in
Python classes.

78. Discuss the advantages and disadvantages of using multiple inheritance in Python,
along with potential conflicts and resolutions.

79. How would you implement a thread-safe singleton pattern in Python, considering
potential race conditions?

80. Explain the concept of a 'mixin' class and how it can be used to add functionality to
multiple unrelated classes in Python.

81. Describe how you would implement a custom descriptor to control attribute access in a
Python class.

82. Explain the role of the s̀uper() ̀function in Python and how it facilitates cooperative
multiple inheritance.

83. Discuss strategies for handling circular dependencies in Python object-oriented
designs.

84. How can you use decorators to enforce type checking on method arguments and return
values at runtime?

85. Explain how the Python object model handles memory management and garbage
collection in the context of OOP.

86. Describe the process of creating a custom exception hierarchy in Python to handle
specific error conditions in your application.

87. How can you serialize and deserialize Python objects to/from various formats (e.g.,
JSON, XML, Protocol Buffers) using OOP principles?

88. Explain how you would implement a command pattern using Python classes to
encapsulate actions as objects.

89. Discuss strategies for designing classes that are both extensible and maintainable in a
large Python project.

90. How can you use the 'visitor' pattern to add new operations to a hierarchy of classes
without modifying the classes themselves?

91. Explain the concept of 'composition over inheritance' and provide a Python example
where it is more appropriate.

92. Describe how you would implement a custom context manager using Python classes to
manage resources efficiently.

93. How can you use the _̀_new__ ̀method to control object creation and enforce specific
initialization logic in Python classes?

94. Explain how you would design a system using Python classes that supports plugin-
based architecture and dynamic loading of modules.

95. Discuss the trade-offs between using properties and getters/setters in Python classes
for attribute access control.

96. How can you use the 'observer' pattern to create loosely coupled objects that react to
changes in other objects?

97. Explain how you would implement a custom metaclass that automatically registers all
subclasses in a central registry.

98. Describe how you can effectively use the _̀_mro__ ̀attribute to understand and debug
complex inheritance hierarchies in Python.

99. How would you implement a system for undo/redo functionality using the memento
pattern with Python objects?

100. Explain the role of the _̀_del__ ̀method in Python and the potential pitfalls of relying on
it for resource cleanup.


