102 CakePHP Developer interview questions to ask your
applicants

Questions

1. What is CakePHP and why would someone choose it over other PHP frameworks?
2. Explain the MVC architecture as it applies to CakePHP. Imagine I'm five.

3. Describe the purpose of a Controller in CakePHP.

4. What are Models used for in CakePHP applications?

5. What role do Views play in CakePHP?

6. What is a Helper in CakePHP, and give an example of when you'd use one?

7. Explain what a Component is in CakePHP.

8. How does CakePHP handle routing? Can you give a simple example?

9. What is the purpose of CakePHP's ORM (Object-Relational Mapping)?

10. How do you create a database table using CakePHP's conventions?
11. Explain how to use CakePHP's baked-in validation features.

12. What is CakePHP's naming convention for controllers, models, and views, and why is it
important?

13. How would you create a simple form in CakePHP?
14. What is a 'flash message' in CakePHP and how do you display one?

15. Describe how you would handle authentication in a CakePHP application. What built-in
tools could you use?

16. What are CakePHP's 'Bake' tools, and when would you use them?

17. Explain the difference between find(), first(), and all() methods in CakePHP models.
18. How would you debug a CakePHP application? What tools are available?

19. What is a behavior in CakePHP and when might you implement one?

20. How do you handle file uploads in CakePHP?

21. Explain the purpose of CakePHP's ACL (Access Control List).

22. How would you create a custom route in CakePHP?

23. What are the advantages of using CakePHP's built-in security features?

24. How do you handle relationships between tables in CakePHP models (e.g., hasMany,
belongsTo)?

25. Explain how to write a unit test in CakePHP.

26. What is a CakePHP plugin, and how do you install one?

27. How would you implement pagination in a CakePHP view?

28. Describe how to use CakePHP's caching mechanisms to improve performance.
29. What are the key differences between CakePHP 3.x and 4.x?

30. How do you implement and use behaviors in CakePHP, and what are some practical
examples of when you would use them?

31. Explain the role of associations in CakePHP models and how you would define different
types of relationships (e.g., hasMany, belongsTo, hasAndBelongsToMany).

32. Describe the process of creating and using custom validation rules in CakePHP.

33. How would you implement pagination in a CakePHP application, and what are the key
configurations involved?

34. What is the purpose of CakePHP's event system, and how would you use events and
listeners to extend the framework's functionality?

35. Explain how to use CakePHP's caching mechanisms to improve application
performance. What are different caching strategies?

36. Describe how you would handle file uploads in CakePHP, including validation and
storage.

37. How do you implement authentication and authorization in CakePHP using the Auth
component?

38. Explain how to create and use custom helpers in CakePHP views.

39. Describe the process of creating RESTful APIs using CakePHP.

40. How would you debug a CakePHP application? What tools and techniques do you use?
41. Explain how to write unit tests and integration tests in CakePHP.

42. Describe how to use CakePHP's Bake console tool to automate code generation.

43. How do you handle form submissions and CSRF protection in CakePHP?

44. Explain how to work with CakePHP's routing system to create custom routes.

45. Describe the purpose of CakePHP's ORM and how it simplifies database interactions.

46. How do you use CakePHP's security component to protect against common web
vulnerabilities?

47. Explain how to implement internationalization (i18n) and localization (I110n) in CakePHP.
48. Describe how to use CakePHP's email component to send emails from your application.

49. How would you optimize a slow-performing CakePHP application? What are some
common bottlenecks and their solutions?

50. Explain CakePHP's event system and how you would use it to implement cross-cutting
concerns like logging or auditing.

51. How does CakePHP handle internationalization (i18n) and localization (I10n)? Describe a
scenario where you'd need both.

52. Describe CakePHP's ORM. How does it prevent SQL injection, and what are some
strategies for optimizing complex queries?

53. Explain CakePHP's routing system. How can you create custom routes, and why might
you want to do so?

54. Discuss CakePHP's security features. What steps would you take to protect a CakePHP
application from common web vulnerabilities like XSS or CSRF?

55. How can you implement API| authentication in CakePHP? Describe different
authentication methods and their trade-offs.

56. Explain how you would implement a custom CakePHP shell command. What use cases
are suitable for shell commands?

57. Describe how you would implement a plugin in CakePHP. How do plugins promote
code reusability?

58. How would you handle file uploads in CakePHP, including validation and storage?

59. Explain CakePHP's caching mechanisms. How can you use caching to improve
application performance?

60. Discuss how to debug a CakePHP application. What tools and techniques do you use?

61. Explain CakePHP's asset management. How would you use it to optimize CSS and
JavaScript delivery?

62. How do you handle database migrations in CakePHP? Explain best practices for
managing schema changes.

63. Describe how you would implement a custom validation rule in CakePHP.

64. Explain the difference between CakePHP's contain and join operations in the ORM.
When would you use each?

65. How would you implement a multi-tenant application using CakePHP?

66. Explain how you can use CakePHP's request object to inspect and manipulate incoming
data.

67. Describe how you would implement a background task or queue using CakePHP.

68. How do you ensure code quality in a CakePHP project? Discuss code standards, testing
strategies, and code review processes.

69. Explain how you would integrate a third-party library or service into a CakePHP
application.

70. Describe CakePHP's service container and how it promotes dependency injection. Give
an example of its usage.

71. How can you implement role-based access control (RBAC) in CakePHP? What
strategies can you use to manage permissions?

72. Explain how you would handle transactions in CakePHP to ensure data consistency.

73. Describe the process of deploying a CakePHP application to a production environment.
What are some key considerations?

74. Explain your experience with CakePHP 5 and its new features compared to older
versions. What are the advantages and disadvantages of upgrading?

75. How would you optimize a CakePHP application that's experiencing slow database
queries, focusing on identifying and resolving bottlenecks?

76. Describe your experience with implementing and managing complex caching strategies
in CakePHP applications, including opcode caching, query caching, and view caching?

77. Explain your approach to designing and implementing a RESTful APl using CakePHP,
emphasizing versioning, authentication, and rate limiting.

78. How would you use CakePHP's ORM to implement a complex data relationship, such as
a many-to-many relationship with additional attributes?

79. Describe your experience with different deployment strategies for CakePHP
applications, including zero-downtime deployments and rolling updates.

80. How would you implement a custom authentication and authorization system in
CakePHP, including handling different user roles and permissions?

81. Explain your approach to securing a CakePHP application against common web
vulnerabilities, such as XSS, CSRF, and SQL injection, beyond the framework's built-in
protections?

82. How would you extend CakePHP's core functionality by creating custom components,
helpers, and behaviors, providing specific examples of when and why you would use each?

83. Describe your experience with integrating third-party libraries and APIs into CakePHP
applications, including handling dependencies and potential conflicts?

84. How would you approach debugging and profiling a CakePHP application to identify
performance issues and memory leaks, using tools like Xdebug and profiling libraries?

85. Explain your understanding of CakePHP's event system and how you would use it to
implement loosely coupled and extensible application logic?

86. How do you handle transactions and ensure data consistency when performing multiple
database operations in CakePHP?

87. Describe your experience with writing unit and integration tests for CakePHP
applications, including mocking dependencies and ensuring code coverage.

88. How would you implement a queue system in CakePHP to handle long-running tasks,
such as sending emails or processing large amounts of data?

89. Explain your approach to internationalizing and localizing a CakePHP application,
including handling different languages, currencies, and date formats.

Q0. Describe your strategy for refactoring legacy CakePHP code to improve maintainability,
performance, and security, without introducing regressions?

@1. How would you monitor a CakePHP application in production to identify performance
bottlenecks, errors, and security threats, using tools like New Relic or Sentry?

@2. Explain how you would implement a custom routing system in CakePHP to create SEO-
friendly URLs and handle complex routing requirements.

93. How would you use CakePHP's console to create custom tasks and scripts for
automating repetitive tasks, such as database migrations or data imports?

Q4. Describe your experience with implementing and managing search functionality in
CakePHP applications, using technologies like Elasticsearch or Solr?

9@5. How would you handle file uploads and downloads in CakePHP, including security
considerations and best practices for storing and retrieving files?

Q6. Explain your approach to managing configuration settings in CakePHP across different
environments, such as development, staging, and production?

Q7. Describe your experience with contributing to open-source CakePHP projects or
creating your own CakePHP plugins, highlighting the challenges and benefits?

@8. How would you integrate CakePHP with other technologies, such as React, Angular, or
Vue.js, to build a modern web application?

99. Explain how you would implement a real-time communication feature in a CakePHP
application, using technologies like WebSockets or Server-Sent Events?

100. How would you optimize CakePHP applications for mobile devices, including
responsive design, mobile-first development, and performance considerations?

101. Describe your experience with implementing and managing user roles and
permissions in CakePHP applications, including RBAC (Role-Based Access Control) and
ACL (Access Control Lists)?

102. Explain your approach to handling errors and exceptions in CakePHP, including
logging, error reporting, and user-friendly error pages?



