
101 Redux interview questions to hire top engineers

Questions

1. What's Redux? Imagine you're explaining it to a friend who knows nothing about coding.

2. Why would someone use Redux in a React app? What problem does it solve?

3. What are the three main parts of Redux? (Hint: think store, actions, reducers).

4. What is a Redux store, and what does it do?

5. What are Redux actions, and what's their purpose?

6. What are Redux reducers, and what role do they play?

7. What's the difference between m̀apStateToProps̀ and m̀apDispatchToProps̀ in Redux?

8. Can you describe the flow of data in a Redux application? Start from an event and trace it
all the way to state update.

9. What's the purpose of the c̀onnect̀ function in Redux, and how does it work?

10. How do you dispatch an action in Redux?

11. What is the ìnitialStatè in a Redux reducer, and why is it important?

12. Explain the concept of immutability in Redux. Why is it important and how do you
enforce it?

13. What are some common Redux middleware libraries, and what problems do they solve?
(e.g., Redux Thunk, Redux Saga)

14. How can you handle asynchronous actions in Redux? What are some common
patterns?

15. What is Redux Thunk, and how does it help with asynchronous actions?

16. What's the difference between Redux Thunk and Redux Saga?

17. How do you test Redux reducers and actions?

18. What are some best practices for structuring a Redux application?

19. How can you debug a Redux application? What tools are available?

20. What are some potential drawbacks of using Redux? When might you choose not to
use it?

21. Explain the concept of a 'selector' in Redux. Why are they useful?

22. How does Redux DevTools help in debugging Redux applications?

23. What is the purpose of the c̀ombineReducers̀ function in Redux?

24. Can you explain the difference between àpplyMiddlewarè and c̀omposè in Redux?

25. How do you handle side effects in Redux using middleware?

26. What are some alternatives to Redux for state management in React? What are their
trade-offs?

27. Describe a scenario where using Redux might be overkill.

28. How do you reset the Redux store to its initial state?

29. How does Redux handle asynchronous actions, and what are some common
middleware solutions for managing them?

30. Explain the concept of Redux Thunk and how it simplifies handling asynchronous
operations within Redux actions.

31. Describe the purpose and implementation of Redux Saga, highlighting its advantages
over Redux Thunk for complex asynchronous flows.

32. Discuss the importance of using selectors in Redux and how they improve performance
and maintainability.

33. What strategies can you use to optimize Redux store updates to prevent unnecessary
re-renders in connected components?

34. Explain how you would implement optimistic updates in a Redux application and handle
potential errors.

35. How does Redux DevTools enhance the debugging and development process, and
what features does it offer for inspecting state changes?

36. Describe how to persist and rehydrate a Redux store, ensuring that application state is
preserved across sessions.

37. Explain the differences between m̀apStateToProps̀ and m̀apDispatchToProps̀ and how
they are used in c̀onnect̀.

38. How can you ensure type safety in a Redux application, particularly when dealing with
actions and reducers?

39. Describe how to implement and use custom middleware in a Redux application.

40. Explain different techniques for normalizing data in a Redux store to improve
performance and data consistency.

41. Discuss the trade-offs between using multiple Redux stores versus a single store with a
complex state structure.

42. How can you implement code splitting in a Redux application to improve initial load
time?

43. Explain how you would handle form state management using Redux, including
validation and submission.

44. Describe how to test Redux reducers, actions, and middleware effectively.

45. How can you implement undo/redo functionality in a Redux application?

46. Explain how to use Redux with React Context API and when it might be beneficial.

47. Describe strategies for handling race conditions when dealing with asynchronous
actions in Redux.

48. Discuss how to profile and optimize the performance of a Redux application, identifying
common bottlenecks.

49. How can you use memoization techniques to optimize selector performance in Redux?

50. How would you implement optimistic updates with Redux, and what are the potential
drawbacks?

51. Explain how you would use Redux Saga to manage complex asynchronous workflows,
especially those involving cancellation or debouncing.

52. Describe a scenario where Redux might not be the best choice for state management,
and suggest alternative approaches.

53. How do you ensure type safety in a Redux application, and what tools or techniques do
you prefer?

54. Explain the concept of 'rehydration' in Redux and why it's important for server-side
rendering.

55. How would you optimize a Redux store with a very large state object to improve
performance?

56. Describe how you would test a Redux middleware.

57. Explain the differences between ùseSelector̀ and c̀onnect̀ in React Redux, and when
you might choose one over the other.

58. How would you implement undo/redo functionality using Redux?

59. Describe how to handle authentication with Redux, including storing tokens and
handling API requests.

60. Explain how you would integrate Redux with a WebSocket to handle real-time data
updates.

61. How would you implement code splitting in a Redux application to improve initial load
time?

62. Describe the process of migrating a large codebase from a different state management
solution to Redux.

63. How do you handle race conditions when dispatching multiple asynchronous actions in
Redux?

64. Explain the purpose of Redux DevTools and how you would use it to debug a complex
Redux application.

65. How would you implement a feature that allows users to persist specific parts of the
Redux store to local storage?

66. Describe how you would handle errors in Redux middleware and prevent them from
crashing the application.

67. Explain how to use Redux Toolkit's c̀reateAsyncThunk̀ for handling asynchronous
requests, including error handling and loading states.

68. How would you design a Redux store to handle data from multiple APIs with different
data structures?

69. Describe how you would implement a feature that requires coordinating actions across
multiple Redux slices.

70. How can you prevent unnecessary re-renders in React components connected to the
Redux store?

71. Explain the trade-offs between using c̀ombineReducers̀ versus manually composing
reducers.

72. How would you implement server-side rendering with Redux, considering data fetching
and state hydration?

73. Describe how to use memoization techniques to optimize Redux selectors.

74. Explain how you would handle form state with Redux, especially for complex forms with
validation and dependencies.

75. How can you ensure that your Redux reducers are pure functions, and why is this
important?

76. Describe how you would use code generation tools to automate Redux boilerplate and
improve development speed.

77. Explain how to implement a Redux middleware that logs all dispatched actions and
state changes for debugging purposes in production environments without affecting
performance.

78. How would you monitor and measure the performance of your Redux store in a
production application?

79. Explain the performance implications of different Redux middleware choices in a
complex application.

80. How can you ensure type safety throughout your Redux application, from actions to
reducers to components?

81. Describe a scenario where you would choose Redux over React Context, and why.

82. How would you optimize a Redux store that contains a very large, deeply nested object?

83. Explain how you would implement undo/redo functionality in a Redux application
without using a third-party library.

84. Discuss the trade-offs between using c̀ombineReducers̀ and writing a single reducer
that handles all actions.

85. How do you handle complex asynchronous logic and side effects in a Redux
application, beyond basic thunks?

86. Explain the benefits and drawbacks of using Redux Toolkit's c̀reateAsyncThunk̀ versus
writing custom thunks.

87. How can you effectively test Redux reducers that rely on external data or services?

88. Describe a situation where you might need to use m̀emoizè in a Redux application, and
explain how it works.

89. How do you handle code-splitting in a large Redux application to improve initial load
time?

90. Explain how you would implement optimistic updates in a Redux application and handle
potential errors.

91. Discuss the different approaches to normalizing data in a Redux store and when you
would choose each one.

92. How do you manage and persist user sessions and authentication tokens within a Redux
store?

93. Explain how you would integrate Redux with a server-sent events (SSE) or WebSocket
connection.

94. How do you debug performance issues specifically related to Redux in a production
application?

95. Explain how to use Redux DevTools effectively for debugging complex state transitions
and side effects.

96. Describe how you would migrate a large, existing codebase to use Redux without
breaking existing functionality.

97. How do you enforce immutability in your Redux reducers and prevent accidental state
mutations?

98. Explain how to implement time-travel debugging in a Redux application, allowing users
to step back and forward in time.

99. How would you design a Redux store to handle real-time collaborative editing in a
document?


